

Trends in fuel cell power train

1st Training in Bahia Blanca, ARG 12-14th of November 2018

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Co-funded by the Erasmus+ Programme of the European Union

FOR EDUCATIONAL PURPOSE ONLY

Running on hydrogen and air => emitting just water!

The ultimate solution???

Fuel Cells –Questions

Basic questions:

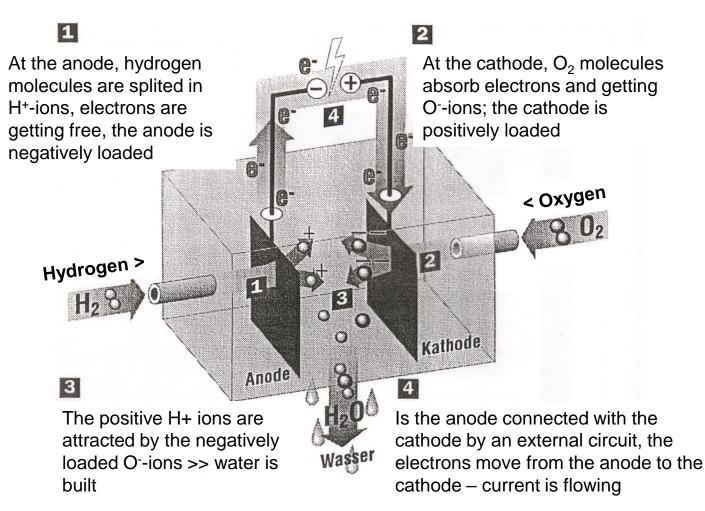
- What can we expect from fuel cells (FCs)?
- What are fuel cells?
- What is the driver for fuel cells and what can fuel cells do better than batteries?
- Are they in competition with batteries?
- What are the draw backs and shortcomings?

Fuel Cell - Basics

Basic principle:

- Fuel cell (FC) is an electro-chemical energy converter with continuous supply of fuel and oxidant (air, similar ICE)
- FC is a "direct energy converter"
- the cell has a very high efficiency up to 70% 90%
- small heat loss = "cold combustion".
- no moving parts, except auxiliaries (compressor and pumps)
 - no (low) noise
- no CO₂, no pollutants, only water or steam

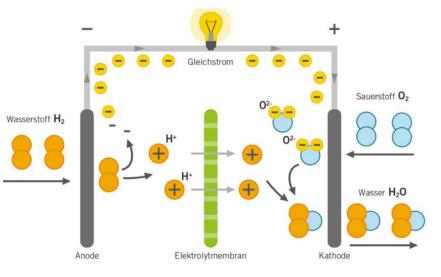
Fuel Cell - Basics


Basic principle:

- Basic overall reaction (hydrogen gas reaction, cold)
 - H₂ + ½ O₂ => H₂0
- Electrolyte
 - base (NaOH, KOH)
 - acid (H₂SO₄, H₃PO₄)
 - solid (polymere, ceramics)
- Electrodes need precious metals for the activation (expensive!)

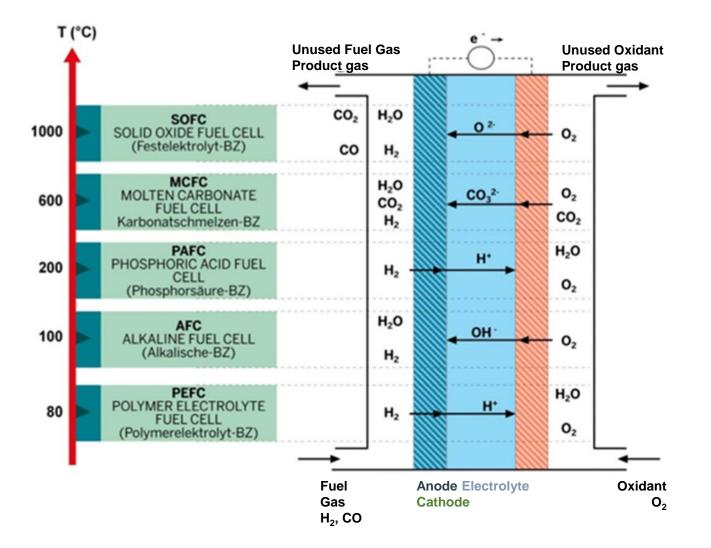
Fuel Cell - Principle

Fuel Cell – Principle II


- The theoretical voltage of an hydrogen/oxygen fuel cell is 1,23 V @ 25°C
- The voltage depends on the fuel, the quality of the cell and on the temperature.
- To get higher voltages a lot of cells are connected in series
 - Build so called fuel cell stacks
- Under load the chemical and electrical processes result in lowering of the voltage
 - In real fuel cells voltages between 0.5 1 V can be achieved

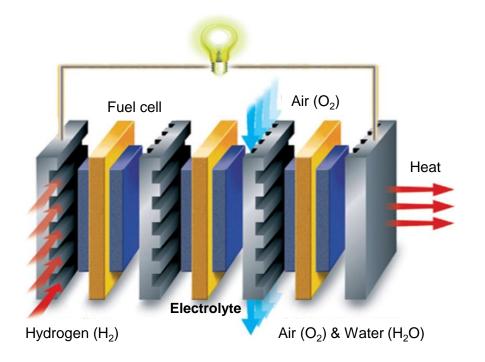
Fuel Cell – Principle III

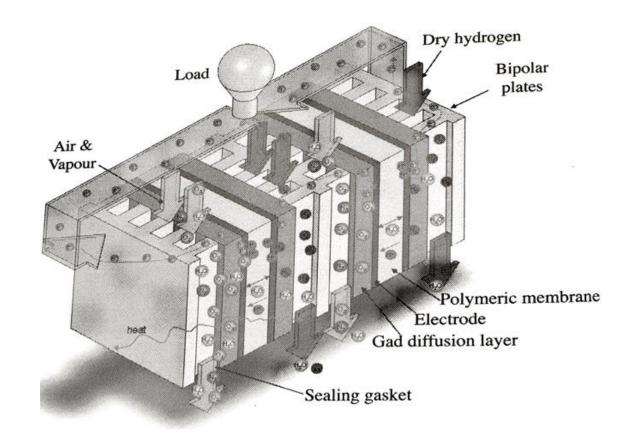
- A fuel cell delivers approximately the same amount of electric energy and heat
- the temperature level of the dissipated heat is relatively low
 - that means the temperature difference to ambient temperature is low
 - therefore cooling of a fuel cell is more difficult than cooling of an ICE



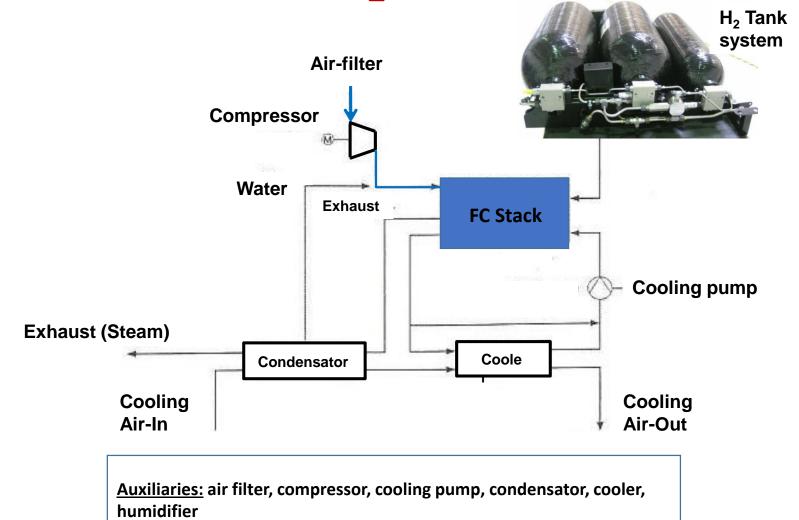
Types of Fuel Cells

Fuel Cell Type	Operating Temperatur	Electrolyte	lonic Conduction	Fuel gas			Electric Efficiency	Application	Remarks
AFC							Cell: 60 - 70 %		needs pure H_2 and O_2
Alkaline Fuel Cell	60 - 80 °C	КОН(ОН⁻)	OH	H ₂	0 ₂	< 1 ppm	Syst.: 60%	Space, Military, Vehicles	corrosion!
DMFC		Proton condut.							
Direct Methanol FC	~ 80 °C	Membran	H⁺	CH₂OH	$O_2(Air)$		Cell: 20-30%	Small devices. Camping	low efficiency
PEMFC LowTemp		Proton condut.					Cell: 50 - 75 %	Vehicles, Space,	
Polymer Membran FC	60 - 120 °C	Membran	H⁺	H ₂	O ₂ (Air)	< 100 ppm	Syst.: 45 - 60%	Stationary devices	high power density
PEMFC HighTemp		Proton condut.					Cell: 50 - 75 %	Vehicles, Space,	
Polymer Membran FC	120 - 200 °C	Membran	H⁺	H ₂	O ₂ (Air)	< 500 ppm	Syst.: 45 - 60%	Stationary devices	high power density
PAFC		Concentrated					Cell: 55 %	smaller power stations	
Phosphoric Acid FC	160 - 200 °C	Phosphoric Acid	H^{+}	H ₂	O ₂ (Air)	<1%	Syst.: 40%	big vehicles	corrosion problems
MCFC				CH ₄ ; Coal &			Cell: 55 %	power stations	Complex operating,
Molten Carbonate FC	~ 650 °C	Alkali carbonate	CO3	bio gas, H ₂	O ₂ (Air)	ok	Syst.: 50%	big vehicles	corrosion problems
SOFC		doped		H _{2,} CO _,			Cell: 60 - 65 %	power stations,	
Solid Oxide FC	~ 1000 °C	Zirconium oxide	0	Hydrocarbon	O ₂ (Air)	ok	Syst.: 55 - 60 %	Auxilliary power units	


Temperature ranges of fuel cell types

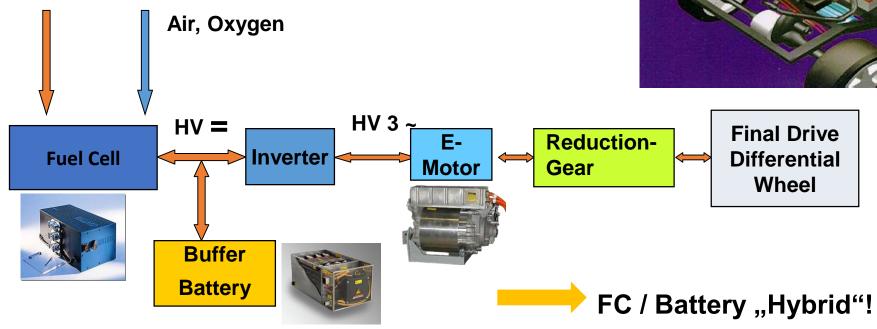


Stack Design



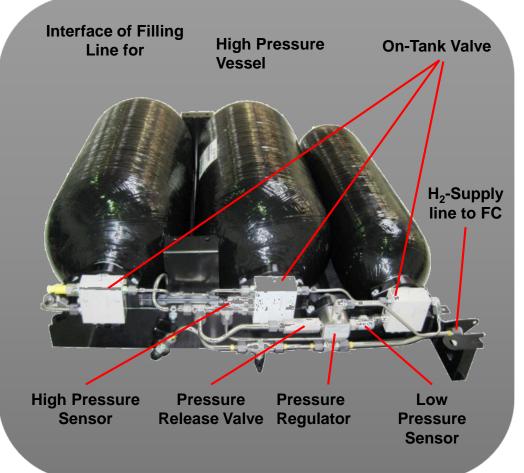
Fuel cell-System – H_2 / Air - components

Co-funded by the Erasmus+ Programme of the European Union



Fuel Cell Powertrain

Principal Layout / Components:



Tank system

High Pressure Storage for Hydrogen

Storage system specifications:

- Fully wrapped composite cylinder with plastic liner (Type-IV)
- Storage pressure up to 70 MPa
- Plastic liner as hydrogen permeation barrier

Overview Fuel Cell Vehicles

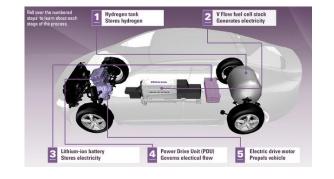
- Typical specs of todays Fuel Cell Vehicles:
 - PEM Fuel cell
 - Appr. 5 kg H2 in gas tanks @700 resp. @350bar
 - SUV, mid & compact class => Battery Hybrid, no transmission
 - Range >500km, typ. power 100kW full transport capability
- Almost all OEMs are developing FCVs!
 - Comittment for development and market introduction of FCVs in 2015 2017 from:
 - Daimler AG, Ford Motor Company, General Motors Corporation/Opel, Honda Motor Co., Ltd., Hyundai Motor Company, Kia Motors Corporation, die Allianz Renault SA und Nissan Motor Co., Ltd. und Tovota Motor Corporation

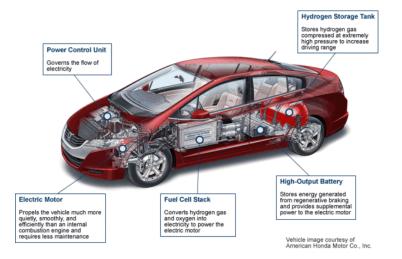
Hyundai iX35 Fuel Cell

First series production hydrogen fuel cell vehicle

Toyota FCV - New Model 2015

- Toyota FCV 2015 Specs:
 - Power 100 kW; 65% eff.; 3kW/Liter
 - Range: 500 km to 700 km (JC08)
 - Cold start capability: -30°C
 - Price < 80000 €
- Improvements over predecessor (FCHV 2008):
 - The costs of the fuel cell have been reduced by 80%!
 - Number of tanks reduced => more interior space



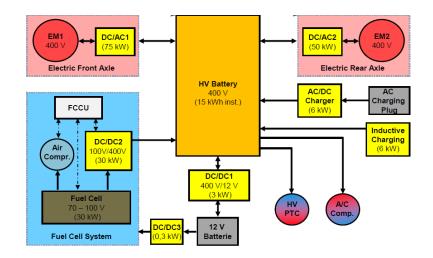


Honda FCX - Clarity

- Honda FCX Clarity Specs:
 - 100 kW e-motor on front axle
 - hydrogen fuel cell in tunnel
 - Big hydrogen tank over rear axle compromising luggage compartment

Audi A7 h-tron (2015)

- Audi A7 h-tron Specs:
 - Plug-In FCV
 - PEM FC operating @ ~80°C;
 - Cold start capability: -28°C
- 4 Hydrogen tanks
 - 5 kg @ 700 bar
 - ~ 100 km per kilogram of hydrogen
 - Battery: Li-Ion 8,8 kWh
 - Range 500 (50 pure electric) km
- 2 PSM electric motors rated at 85/114 kW
 - Efficiency powertrain ~ 60%
 - 0 100 km/h in 7,9 sec



Magna Steyr FC-REEV - FC Range Extended Electric Vehicle

- Base Mercedes E-Vito (Bolt)
- Combination of a bigger capacity battery with a smaller power FC (=REX)
- Application: delivery van for more than one shift

Fuel Cell Power Train - Conclusion

Disadvantages:

- still expensive (precious materials & catalyst metals)
- difficult to manage (especially water management)
- dynamic (control)
- stability and degradation
- starting problem (duration until ready), solved?
- cold start problem (freezing!), solved?
- necessity of a start / puffer battery (= battery hybrid)
- hydrogen generation, storage, fueling infrastructure

Fuel Cell Power Train - Conclusion

Advantages:

- no emissions (real ZEV!)
- no moving parts, less noise (except compressor)
- high efficiency in part load condition (city traffic!)
- part of the upcoming hydrogen society/age
- better range than pure electric power train

Trends in fuel cell power train Questions??

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein." FOR EDUCATIONAL PURPOSE ONLY

Co-funded by the Erasmus+ Programme of the European Union

